Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants.

نویسندگان

  • Kenneth P McNatty
  • Jennifer L Juengel
  • Karen L Reader
  • Stan Lun
  • Samu Myllymaa
  • Steve B Lawrence
  • Andrea Western
  • Mohamed F Meerasahib
  • David G Mottershead
  • Nigel P Groome
  • Olli Ritvos
  • Mika P E Laitinen
چکیده

The oocyte-secreted polypeptide growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15, also known as GDF9B) have both been shown to be essential for ovarian follicular development and ovulation rate. In addition, it is known from both in vivo and in vitro studies that these factors co-operate in some manner. To date, most studies examining the in vitro effects of these growth factors have used the rodent model. However, the evidence suggests that these growth factors have somewhat different roles between rodents and ruminants. Therefore, the objectives of these studies were to examine the effects of GDF9 and BMP15, alone and together, on the functions of ovine and bovine granulosa cells under in vitro conditions. Ovine (o)BMP15 given together with murine (m)GDF9 or oGDF9 was more potent in stimulating (3)H-thymidine incorporation by ovine granulosa cells compared with each growth factor alone. For bovine granulosa cells, there appeared to be little or no co-operativity between oBMP15 and oGDF9 as oBMP15 alone was as potent as any combination of the two growth factors in stimulating (3)H-thymidine uptake. The species of origin of GDF9 affected the progesterone response in ovine granulosa cells with mGDF9 stimulating and oGDF9 inhibiting progesterone production. Ovine BMP15 alone had no effect on progesterone production by ovine granulosa cells and these growth factors did not appear to co-operate. FSH-stimulated progesterone production by bovine granulosa cells was most potently inhibited when oBMP15 and murine or ovine GDF9 were administered together. As was observed for progesterone, the species of origin of GDF9 affected inhibin production by ovine granulosa cells where mGDF9 inhibited while oGDF9 stimulated production. Murine GDF9 also inhibited inhibin production from bovine granulosa cells. For both ovine and bovine granulosa cells, BMP15 alone had no effect on inhibin production and there did not appear to be any co-operation between GDF9 and BMP15. These results indicate that the effects of BMP15 and GDF9 varied with respect to the species of origin of the growth factor. Moreover, the effects of GDF9 and BMP15 together were often co-operative and not always the same as those observed for these growth factors alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function.

The oocyte-secreted polypeptide growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15, also known as GDF9B) have both been shown to be essential for ovarian follicular growth and function. The effects of murine (m) and ovine (o) GDF9 as well as oBMP15, alone or together, on 3H-thymidine uptake and progesterone and inhibin production by granulosa cells f...

متن کامل

Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...

متن کامل

Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility — A Review

Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the b...

متن کامل

Single Nucleotide Polymorphism Analysis of the Bone Morphogenetic Protein Receptor IB and Growth and Differentiation Factor 9 Genes in Rayini Goats (Capra hircus)

The FecB, a mutation in the bone morphogenetic protein receptor IB (BMPR-IB) gene, which increases the fecundity of Booroola Merino sheep, and FecGH, a mutation in the Growth and Differentiation Factor 9 (GDF9), which affects the fecundity of Cambridge and Belclare sheep in a dose sensitive manner, were analyzed as candidate genes associated with the prolificacy in Rayini goats. These polymorph...

متن کامل

Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.

Oocyte quality is a key limiting factor in female fertility, yet we have a poor understanding of what constitutes oocyte quality or the mechanisms governing it. The ovarian follicular microenvironment and maternal signals, mediated primarily through granulosa cells (GCs) and cumulus cells (CCs), are responsible for nurturing oocyte growth, development and the gradual acquisition of oocyte devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Reproduction

دوره 129 4  شماره 

صفحات  -

تاریخ انتشار 2005